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In a letter to the editor, Dr Aaron Boes (2020) commented

on our study (Salvalaggio et al., 2020) in which we com-

pared different structural and functional MRI methods to

predict behavioural deficits in a large cohort of subacute

stroke patients (Corbetta et al., 2015). Specifically, we used

lesion symptom mapping, i.e. the behavioural prediction

based on lesion location and volume, as a baseline for three

methods measuring brain network(s) disconnection. Two

methods assessed disconnection ‘indirectly’ using the

lesion to generate maps of altered connectivity based on

healthy control datasets (7 T ‘Human Connectome Project’

datasets: http://www.humanconnectome.org/study/hcp-yo

ung-adult/; Vu et al., 2015). We computed structural dis-

connection of white matter pathways (SDC) and function-

al disconnection of brain networks (FDC), or lesion

network mapping (Boes et al., 2015). The third method

measured patterns of altered functional connectivity direct-

ly based on the temporal correlation of the spontaneous

blood oxygen level-dependent (BOLD) signal. Our results

showed comparably high behavioural prediction for lesion,

SDC, and functional connectivity, but a weak prediction

for FDC. We concluded that FDC might be used to localize

abnormal networks, but its low sensitivity to the severity of

behavioural deficits implies that it cannot predict behaviour

or recovery of function, nor be a substitute for direct func-

tional MRI functional connectivity.

We want to thank Dr Boes for his interest and for high-

lighting the relevance of our analysis to the quantitative

evaluation of lesion network mapping, a method proposed

for the evaluation of network dysfunction in neurological

and psychiatric disorders (Fox, 2018). Dr Boes reminded us

that the method, originally designed to identify cortical net-

work dysfunction caused by small subcortical lesions (Boes

et al., 2015), may not be suited for large cortico-subcortical

strokes that encompass grey and white matter and that rep-

resent most patients in Salvalaggio et al. (2020).

The white matter BOLD signal is about a quarter of the

amplitude of the grey matter signal, which in principle leads

to weaker temporal correlation maps at the cortical level,

the procedure used in lesion network mapping. However, re-

cent studies have shown topographic-specific cortical net-

works derived from BOLD signals derived from specific

regions of the white matter (Peer et al., 2017; Huang et al.,

2018; Li et al., 2019).

We agree that the mixture of grey and white matter dam-

age in large lesions is essential for the low accuracy of be-

havioural predictions derived from FDC maps. In the article,

we qualitatively discussed this issue by contrasting lesions

that cause visual field versus motor deficits. In the former

case, the most predictive lesions damaged the lateral occipi-

tal cortex. Correspondingly, FDC showed a beautiful map

of the Visual network that was strongly predictive of
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Figure 1 Indirect functional connectivity maps estimated using grey and white matter regions lesioned by a single stroke as

seeds. Indirect functional maps were computed from a set of healthy controls (see Salvalaggio et al., 2020 for details). (A) Stroke lesion segmen-

tation (red) overlapping with grey matter (grey mask) and white matter (white mask). The Harvard cortical and subcortical template was used to

compute tissue-lesion seed regions of interest, which were subsequently used to compute mean functional connectivity maps. (B) Whole brain

mean functional connectivity strength (Pearson’s correlation) for each tissue regions of interest shows a different distribution pattern: stronger

values (e.g. 40.20) are more frequent in the grey matter seed map compared to the white matter seed map (distributions of 0 values are trun-

cated to improve visualization). (C) Spatial grey matter seed mean functional connectivity map. (D) Spatial white matter seed mean functional

connectivity map. (E) Visual comparison between spatial grey matter seed functional connectivity map and mean functional connectivity com-

puted using the whole stroke lesion as seed region of interest (i.e. averaging grey and white matter signals). Clusters showing higher connectivity

strength (40.30) in the grey matter seed map are not represented in the whole-seed map. (F) Distribution of the higher connectivity strength

values (40.30) separately for grey matter seed and whole-seed network maps. GM = grey matter; WM = white matter.
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behaviour (R2 = 0.38; Fig. 2 in Salvalaggio et al.). In the lat-

ter case, motor deficits were most severe for lesions affecting

the white matter’s corona radiata. Correspondingly, motor

FDC maps were less specific and accounted for less behav-

ioural variability (R2 = 0.12; Fig. 3 in Salvalaggio et al.).

Moreover, lesion maps for language involving even more ex-

tensive white and grey matter perisylvian regions yielded

FDC maps with no predictive value for the severity of deficit

(R2 = 0.06; Fig. 6 in Salvalaggio et al.).
We are currently investigating this issue quantitatively.

Figure 1A shows a single stroke lesion that encompasses the

grey matter of the right frontal cortex and the underlying

white matter extending to the periventricular region. The

two subregions can be segmented, and each subregion used

as a region of interest for a whole brain functional connect-

ivity analysis in healthy controls. Interestingly, the distribu-

tion of Fisher z-correlation values is significantly higher

from grey matter than white matter region of interest

(Fig. 1B). These differences are more pronounced when con-

sidering higher functional connectivity values (e.g. Pearson’s

correlation values 40.2). These regions of high correlation

are those estimated as more functionally disconnected in le-

sion network mapping. Possibly more reliable functional

connectivity values from white matter regions of interest will

be derived when centring the regions of interest on recently

identified white matter functional systems (Peer et al., 2017).

Inspection of the whole-brain functional connectivity maps

shows more robust networks for grey matter regions of

interest, and even diverging networks for grey and white

matter regions of interest (Fig. 1C and D). Critically, we ob-

tain more significant maps and distribution of inter-regional

functional connectivity scores with higher means and stand-

ard deviation when the region of interest includes only dam-

aged grey matter voxels compared to the whole lesioned

region as in the standard lesion network mapping approach

(Fig. 1E and F). This loss of strength and variability inevit-

ably affects behavioural prediction.

These preliminary results are consistent with Dr Boes’ and

our suggestion that mixing BOLD signals from white and

grey matter, or different cortical networks, may weaken the

resulting functional connectivity maps. However, it remains

to be seen whether these effects will also solve the low spa-

tial variability or dimensionality of FDC maps, which fur-

ther weakens these maps’ ability to predict the variability of

behavioural scores.

Note, however, that low dimensionality is a not a priori a

negative feature of FDC maps. Multivariate machine learn-

ing methods suffer from the well-known ‘curse of dimen-

sionality’ when applied to relatively small samples. Low

dimensionality prevents overfitting and promotes out-of-

sample generalization, a prerequisite for any clinical applica-

tion. Low dimensionality per se does not seem to be the

problem, as FDC-based models predicted from 0 to 52% of

the variance (for different domains) using the same (small)

number of input components (Salvalaggio et al., 2020).

Nevertheless, the FDC method generates maps with low

spatial variability for many networks, which implies small

between-patient variability and low predictive accuracy.

Dr Boes also suggested different strategies to improve le-

sion network mapping. His idea of describing lesions based

on the parcellated white matter or cortical connectomes may

yield more specific lesion network mapping solving the issue

of network signal mixing.

More generally, the methodology for indirectly assessing

disconnection (structural or functional) is likely not optimal.

As noted in another commentary to our paper (Umarova

and Thomalla, 2020), the results are susceptible to even

slight changes in parameter settings. Other concerns raised

include different sample sizes and flexible threshold selection

applied to the maps (Sperber and Dadashi, 2020).

Finally, we suggest that even though lesion network map-

ping, and indirect methods for assessing structural-functional

disconnection, are motivated by the objective difficulty of

measuring functional MRI and diffusion imaging in acute

neurological or psychiatric patients, or rare patient groups,

we believe it possible to set up protocols that capture this in-

formation as part of routine clinical scans. Automated pipe-

lines can then derive high-quality maps of functional or

structural disconnection (Griffis et al., 2020). We believe

that direct measures of structural and functional disconnec-

tion are possible and should become part of clinical practice.

This effort will be especially valuable to guide novel inter-

ventions for post-stroke behavioural deficits.

Data availability

The data that support the illustrative example in Fig. 1 are

available from the corresponding author, upon reasonable

request.
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